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Abstract

We propose a new framework for providing information
to help optimize domain-specific application codes. Its de-
sign addresses problems that derive from the widening gap
between the domain problem statement by domain experts
and the architectural details of new and future high-end
computing systems. The design is particularly well suited to
program execution models that incorporate dynamic adap-
tive methodologies for live tuning of program performance
and resource utilization. This new framework, which we
call “structured hints,” couples a vocabulary of annotations
to a suite of performance metrics. The immediate target
is development of a process by which a domain expert de-
scribes characteristics of objects and methods in the appli-
cation code that would not be readily apparent to the com-
piler; the domain expert provides further information about
what quantities might provide the best indications of desir-
able effect; and the interactive preprocessor identifies po-
tential opportunities for the domain expert to evaluate. Our
development of these ideas is progressing in stages from
case study, through manual implementation, to automatic
or semi-automatic implementation. In this paper we dis-
cuss results from our case study, an examination of a large
simulation of a neural network modeled after the neocortex.

1 Introduction

Current high-end computing (HEC) systems are ex-
tremely difficult to program. They lack system software and
tools to support the high-level abstractions required for eco-
nomical expression of advanced scientific and engineering
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simulations while producing high-performance code. As
semiconductor technology has continued to evolve, both
new opportunities and new challenges continue to emerge,
demanding corresponding improvements to architecture.
Most pronounced is the move to multicore components
and the re-emergence of heterogeneous computing elements
such as GPUs and ClearSpeed SIMD [2] attached proces-
sors. The IBM Cell architecture embodies both heteroge-
neous and multicore elements [5].

In an earlier paper [4] we described the hierarchical
threaded virtual machine (HTVM) that defines a dynamic,
multithreaded execution model, providing an architecture
abstraction for HEC system software and tool development.

The complexity of these new architectures and the pro-
gramming models that will support them has for some time
been recognized as contributing to an expanding gap be-
tween domain science problem exposition and an effective
response to the underlying architectural details of the sys-
tem. Balancing the convenience and clarity of domain spe-
cific abstractions against the possible performance penalties
induced by the relative inability of compilers to see through
the abstraction is an aspect of the present challenge. An ex-
ample from unstructured mesh-based computation has been
described by White et al. [16].

Kennedy et al. [9] have developed methods for generat-
ing a component library version optimized for a target do-
main. Koes et al. [10] introduce an annotation-mediated
interaction between the compiler and the application pro-
grammer to identify opportunities enabled when pointers
are guaranteed to be independent. The programmer can
supply #PRAGMA INDEPENDENT annotations to suggest
optimization opportunities. Alternatively, the compiler can
suggest candidates for the programmer to evaluate, includ-
ing scores to indicate how much benefit might hinge on the



correctness of the assertion. A generalized approach to or-
ganizing potential dynamic optimizations has been added
to the MIPSpro and gcc compilers [3]. In the highly con-
strained environment available to the embedded system, an
interactive approach giving the programmer instantaneous
performance information and detailed control in real time
of optimization strategies has proved effective [11]. One
hiding place for opportunities for performance improve-
ments is behind the facade of domain-specific abstractions.
A method for exposing these potential opportunities to the
compiler so that it can apply its suite of optimizations has
been reported by Quinlan [13].

A growing number of research projects are targeting de-
velopment of large-scale simulations of biological neural
networks [8, 1, 12, 6]. Goals and approaches vary widely,
but the underlying need for efficient execution of complex
code is shared.

In this paper we discuss a method to capture and convey
domain expert knowledge to the compiler where it can be
exploited to generate optimized codes. The captured knowl-
edge also informs a runtime performance monitoring mech-
anism to support the continuous compilation component of
the HTVM. We discuss the idea, our case study of a simu-
lator of large neural networks, and opportunities and future
work.

2 Approach

The gap is widening between expressions of domain-
specific computations and expressions tailored to efficient
execution on a given system architecture. Domain ex-
perts are and will continue to be challenged to write high-
performance codes. The approach described in this section
is to build an interactive preprocessor that captures infor-
mation from the domain expert to be used in optimizing
code fragments, determining runtime monitoring priorities,
and driving an adaptive compiler — all components of the
HTVM system architecture.

2.1 Domain-Specific Knowledge

It is important to develop a sense of what the domain
expert can know about the application’s behavior without
getting into architecture and system-dependent expertise.
This is a difficult task because application development for
high-performance computing has always required expertise
at both ends of this spectrum — a requirement that is fast be-
coming impossible to reasonably require. In fact, languages
typically expose a great deal of superfluous flexibility that
the compiler then often has to reclaim in the name of opti-
mization. Loop transformations are one example.

An informal summary of our thinking on what the do-
main expert can reasonably be expected to understand in-

cludes the intent of the simulation, aspects of the expected
behavior of the simulation and its components, and prop-
erties of the high-level program describing the simulation.
These high-level observations can be expanded into more-
immediate questions that the domain expert might be able to
answer. Are the data objects fixed or likely to be destroyed,
moved, or extended? Can the internal components of a data
object be rearranged by the compiler without “breaking the
program”? Are there typical limits to the length of dynam-
ically managed lists and queues? Will this value change
rapidly or slowly for the most part? These questions are the
sort that the domain expert can often readily answer.

On the other hand, the compiler often cannot easily an-
swer such questions using static analyses. Moreover, the
number of quantities to track often make unguided dynamic
techniques intractable.

One possible solution is a paradigm where structs laid
out in C by the domain expert are interpreted by the com-
piler as suggestions only. The information extracted from
the domain expert is used to suggest to the compiler and
runtime system means for dynamically optimizing the per-
formance of the application. They are hints, not demands.
Without reference to the underlying hardware architecture
or HTVM software architecture, the hints must address is-
sues of data locality, monitoring priorities, data access pat-
terns, and computation patterns. These will be mapped di-
rectly to specific actions, weighting schemes, and optimiza-
tion strategies in the HTVM system software. To capture,
express, and implement this idea, we are exploring the fol-
lowing component mechanisms:

e Source code annotations provided by the domain ex-
pert (pragma statements will typically suffice) will pro-
vide hints to the compiler.

e Where one of the usual metrics (e.g., performance,
memory use) might be undesirable as the primary in-
dicator, the domain expert can provide alternatives to
associate with a given dynamic optimization.

e These annotations will also be informed by the
interactive dialog established between the domain ex-
pert and the preprocessor.

e Where possible, the compiler (or other parts
of the system) can tentatively identify its own
candidates for ratification by the domain expert (as in
Koes et al. [10]).

e The structured hints accumulated in this way will be
available for reuse within the domain and exploitation
by translation to other domains.

The resulting expertly culled guide to optimization, the
structured hints, includes data structures, dependencies,
weights, and rules. In addition to focusing the compiler’s
attempts at optimization, these structured hints will be an



integrated part of our Structured Hints Database, providing
the runtime system with an informed and tailored set of op-
tions with which to make its choices.

Each hint can be targeted at some part of the execution
model: the adaptive compiler, runtime system, or monitor-
ing system. For example, informed choices about which
pieces of the code to instrument, and how, will become part
of the metric suite used by the adaptive compiling and run-
time system to adjust resource allocation and compilation
strategy during execution. As another example, the domain
expert can identify critical parameters to be adjusted by the
compiler for its adaptive optimizations, thereby narrowing
the parameter space to be searched.

2.2 Interactive Preprocessor

In this section we outline the proposed process for inter-
actively collecting hints from the domain expert. We en-
vision the interaction between the domain expert and the
preprocessor as an iterative conversation managed by the
preprocessing engine.

Structured hints will be represented in a knowledgebase
populated by the results of the interactions between the
application programming, domain expert, and compilation
tools. It will be used by various stages of the code transla-
tion process, the HTVM system, and the runtime monitor-
ing system.

The adaptive compile and runtime system of the HTVM
will require feedback derived from the execution and re-
source allocation monitoring. The hints will drive both
static and dynamic optimizations of the program execution.
They will provide the system with guidance on degrees of
freedom most likely to affect performance, likely bottle-
necks in the code, unpredictable aspects of data locality, and
computational work patterns to steer monitoring.

Figure 1 illustrates the iterative process that defines the
interaction between domain expert and preprocessor. The
Domain Expert is guided by the Positor to provide expert
understanding of the properties of the domain-specific ob-
jects (structures and methods) that allow the Annotator to
generate a new version of the source code. The Evaluator
analyzes each iteration and may suggest additional opportu-
nities to the Domain Expert by producing a newly annotated
source version that the Positor uses to guide the Domain
Expert. A final version of the source is then passed to the
Translator for conversion into HTVM targeted code.

The first round of interaction with the Positor is driven
by a template — initially generic, but colored over time by
knowledge in the Structured Hints Database — of directed
questions about each instance of a data structure and each
recognized access pattern. The savvy Domain Expert may
prune this process by providing annotations in the initial
version of the source.

Structured Hints Database

Data Access
Patterns

Computation ‘ ‘

Monitoring
Patterns

Data Locality ‘ ‘ Priorities

{1 i
5 HTVM System
Software Tools

Adaptive Compiler
Runtime
System Software

Positor L——>> Annotator <(=====3 Positor Monitoring System

Domain Expert Computer Scientist
& Programmer

Figure 1. Structured hints workflow inte-
grated into the HTVM architecture.

HTVM Translator

3 Parallel Simulation of Neural Networks

For the current study we focus on one application code,
pNeocortex. This section briefly describes the basic proper-
ties of its data model and algorithm.

The pNeocortex simulation [7, 15] uses biologically
based compartmental neuron models connected probabilis-
tically to form a dense network. Each neuron might connect
to thousands of others according to the thirty probabilistic
rules that constitute the wiring diagram. The model includes
four basic neuron types. The neuron types and wiring rules
derive from the literature describing the neurophysiology of
the neocortex.

The compartmental model is a style of describing neu-
rons that enables the domain scientist to build up a detailed
neuron from a modest set of component types. Basic com-
partments are linked together in branching chains to form
dendrites. This basic compartment object encapsulates the
state of the Hodgkin-Huxley model segment and is acted
on by methods that initialize these values, prepare them for
each simulation step, facilitate propagation of signal data,
and evolve the state forward in time. Other compartment
objects are specialized to represent ion channels and spik-
ing elements.

The style of model building represented by this approach
has many advantages for the domain expert. It is modular-
ized in familiar units, amenable to an economical hierarchi-
cal description of a complex system, flexible, and conse-
quently powerful.

The model can be thought of as lists of compartments
and of connections. The pseudocode for pNeocortex (Fig-
ure 2) shows that all types are acted on as a group by the
INIT() method. Subsequently, members of each type —



while ( TIME < TOTAL_SIM_TIME )
do {
foreach Object in MODEL
{ Self.INIT(); }
Synchronize;
ExchangeData;

foreach SpikingObject in MODEL ({
if (potential >= threshhold)
foreach SynapticConnection in Self
{ Target.RegisterEvent (); }
}
foreach ChannelObject in MODEL ({
foreach ContactPotential in Self
{ Self.Adjust(V); }
Self.Integrate();
}
foreach CompartmentObject in MODEL ({
foreach ContactPotential in Self
{ Self.Adjust (Vm, Rm); }
Self.Integrate();
}

Synchronize;
step TIME;

Figure 2. Pseudocode for pNeocortex.

SpikingObject, ChannelObject, and the generic Compart-
mentObject — are acted on in turn with various methods
specific to their role in the simulation. Within each of these
bulk operations there is no constraint on execution order.
On the other hand, the ordering of foreach loops expresses
the scheduling of the simulation phases that must be pre-
served.

These tasks and the data objects that they act on are
distributed by assigning groups of neurons to each proces-
sor. Interprocess communication consists almost entirely of
propagating spike events.

4 Case Study and Results

In our study of this code and the current state of large-
scale neural network simulation codes, we have tried to find
opportunities for an expert in the science domain (with ex-
perience in modeling and simulation) to make observations
about the typical evolution of the signals, the intent of the
model abstractions, and the constraints on the ordering of
evaluations.

The pNeocortex simulation presents an interesting exam-
ple. It has a challenging communication pattern. It might be
partitioned at many granularities — compartment, neuron, or
tissue slice — with different implications for performance.
Some aspects of such simulations are well studied, offering

opportunities for improving performance against which our
methods can be tested. Moreover, new and unproven oppor-
tunities arise from new architectural and program execution
models.

As implemented, pNeocortex makes extensive use of
linked lists to build both the neurons and the synaptic con-
nections. This idiom maps well to the incremental and ir-
regular process needed to construct the model but carries
with it severe penalties at execution time. In many cases,
access through pointers hampers the compiler’s ability to
determine dependencies. Several observations can be made
by the domain expert that could lead to profitable source
code translations. These and their possible implications for
optimization opportunities are as follows:

e Static Linked Lists Some of these object lists are
never reordered once the model has been built and
initialized. The compiler could reinterpret the model
creation semantics with the domain expert’s asserted
guarantee that the final list is never reordered, refac-
tored, truncated, or augmented.

e Opaque Structures For some object types, data ac-
cess is strictly regulated by an opaque interface — im-
proving the chances that automatic source translation
is tractable. Internal data could be reorganized in any
way without changing the execution results. In fact, the
entire list of structs could be refactored into a struct of
lists if the compiler saw an opportunity for better per-
formance or better memory use.

e Short Queues Although variable in length, the event
queue maintained by each ChannelObject (which is
scanned during the ChannelObject.Integrate() action)
is typically short. Although the domain expert cannot
guarantee a maximum, he could say that the length is
virtually always less than 3, for example. The com-
piler could choose to implement the queue in a way
that leverages this fact.

e Predictable Behavior The voltage potential in any
compartment of the system is likely to be characterized
over much of the simulation as mostly slowly varying,
infrequently punctuated by spikes or bursts of spikes.
This observation could enable the compiler and run-
time system to employ any of several adaptive tech-
niques to lower the computational burden of forward
integration.

e Duplicated Object Data The memory required by the
neurons is dwarfed by that required to represent the
interconnections. There may be advantages to main-
taining and evolving duplicate copies of neuronal state
data across many nodes in order to lessen the impact
of communication.

e Low Event Rate Neurons are often quiet, posting
spike events infrequently. Depending on how many



neurons are in a thread and the cost of communicat-
ing spike events to other threads, predictive methods
might be employed to reduce the overhead in checking
for events.

As a specific example of what might be done in the case
of static linked lists, consider the basic semantics of build-
ing a large list of objects. If the list was implemented as a
linked list, the compiler could substitute equivalent code to
implement a linked list of subarrays with the possible ad-
vantages of reduced fragmentation, better memory hierar-
chy performance, and new opportunities for vectorization.
Shape analysis [14] might be used by the compiler to iden-
tify the opportunity or as part of a verification step. The
domain expert should be enabled by the tools to express
the concepts in a natural way, without unnecessary stylistic
obligations and burdensome syntactic requirements.

// simple data structure
struct linkedType {

linkedType* next;

double value;

}

// object creation
myPtr = (linkedType x)
malloc( sizeof (linkedType) );
// adding the object to the list
myPtr->next = list->next;
list = myPtr;
// traverse the list
myPtr =list;
while (myPtr != NULL) {

// do stuff
myPtr = myPtr->next;
}

(a) simple linked list

// chunky data structure
struct chunkyType {

chunkyTypex* next;

int objectcount;

double value[N];

(b) linked list chunks

Figure 3. Comparing the semantics of model
building implementations.

Figure 3 shows an example of the kinds of references to a
singly linked list that would typify a simple implementation
used repeatedly in pNeocortex. A linked list of N-element
sublists was manually transformed to one of the linked lists
created during model construction. N was chosen to be 100

for this test. The new data type is similar to the ArrayList
in Java.

As a result of this transformation on a structure used in
the setup phase of the simulation, modest gains in mem-
ory allocation efficiency, resulting in a 10% reduction in the
footprint of the application, enabled slightly larger prob-
lems to be run in these tests. More significant, a perfor-
mance speedup was realized during this phase — between
27% and 55%.

5 Conclusions

In this paper we have discussed an approach to bridg-
ing the gap between the domain scientist expertise and the
details needed to refine a simulation code for optimized
performance on HEC systems. The approach is designed
with the adaptive HTVM execution model in mind. The
approach exploits opportunities for improving performance
made visible to translation engines by hints supplied by the
domain expert.

Much work is needed to move this idea forward. We plan
to pursue the following steps:

e Carry out additional manual translation experiments,
drawing on the opportunities described in the previous
section.

e Build and test scripts to automate the translation pro-
cess and to expose vulnerabilities in the translation,
leveraging existing source transformation tools where
practical.

e Derive elements of the sufficiently robust hinting vo-
cabulary from the experiences gained in the previous
steps.

e Design the structured hints database.

e Develop linkages between HTVM monitoring inter-
face and the structured hints database.

e Characterize application performance in the adaptive
runtime environment of HTVM.

Our ultimate goal is a flexible and extensible bridge
between the domain expertise and the HTVM execution
model. This bridge will be cast in the form of a methodol-
ogy for creating annotations, scripted support mechanisms,
and a knowledge base that captures the domain expert’s ad-
vice in a way that can be used by the adaptive compiler and
runtime to monitor and optimize performance.
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